Lecture 4:
Inference in SLR (continued)
Diagnostic approaches in SLR

BMTRY 701
Biostatistical Methods I



A little more in inference of B’s

= Confidence interval for f3,
* This follows easily from discussion of t-test
» Recall sampling distribution for slope:

1[3)1 ~ N(ﬁ1902 (1[3)1))

= From this, the 95% CI follows:
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Confidence Intervals

= More generally,

Bt 6(B)

= And, the same approach is used for the intercept
(if you would care to):

Byt 0050




SENIC data

> reg <- 1lm(data$LOS~ dataSBEDS)
> summary (reqg) $coefficients

Estimate Std. Error t value Pr(>]t])
(Intercept) 8.625364302 0.272058856 31.704038 1.851535e-57
data$BEDS 0.004056636 0.000858405 4.725782 6.765452e-06

> gt (0.975,111)
[1] 1.981567

95% ClI for 34:

0.00406 +/- 1.98*0.000858 = {0.00236, 0.00576}



More meaningful:

= what about the difference in LOS for a 100 bed
difference between hospitals?

» Go back to sampling distribution:

:él ~ N(ﬁpgz (ﬁAl))

= for a 100 unit difference:

1003, ~ N(1003,,(100°)>(53,))




More meaningful:

= So that implies that the Cl takes the form

1004, %1, ,{1006(f)}

= Hence, simply multiply the 95% CI limits by 100:

95% CI for 100*31:

100* 0.00406 +/- 1.98*10070.000858 = {0.236, 0.576}



What would this look like?

» Recall that the re\?ression line always goes through the
means of X and Y.

= We can add our 95% CI limits of the slope to our
scatterplot by using the knowledge that the regression
line will go through the means of x and .

> mean (dataSLOS)

[1] 9.648319

> mean (dataSBEDS)

[1] 252.1681

# use these as x and y values. then, use each

# of the slopes to find corresponding intercepts
> abline(8.198, 0.00576, 1lty=2)

> abline (9.055, 0.00236, 1lty=2)



SENIC data: 95% CI for slope
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Important implication

* The slope and intercept are NOT independent

* Notice what happens to the intercept if we increase the
slope?
= What happens if we decrease the slope?

> attributes (summary (reqg))

Snames
[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

Sclass

[1] "summary.lm"

> summary (reg) $cov.unscaled

(Intercept) dataSBEDS
(Intercept) 2.41160064e-02 -6.054327e-05
data$SBEDS -6.054327e-05 2.400909e-07



A few comments r.e. inferences

= We assume Y|X ~ Normal

= if this is “seriously” violated, our inferences may
not be valid.

= But, no surprise, a large sample size will save us

= Slope and intercept sampling distributions are
asymptotically normal



Spread of the X's

Recall the estimate of the standard error for the
slope:

&2
0(/81 \/Z(X X)

What happens to the standard error when the
spread of the X's is narrow?

What happens to the standard error when the
spread of the X's is wide?

(Note: intercept is similarly susceptible)




R code

FHHfAHfAHRAHRAHRAH

# simulate data

x1l <- runif (100,0,10)
X2 <- runif (100,3,7)
e <- rnorm(100,0, 3)

vl <= 2 + 1.5*x1 + e
y2 <- 2 + 1.5*x2 + e
plot (x1, yl)

points (x2, y2, col=2)

# fit regression models
regl <- Im(yl ~ x1)
reg2 <- 1Im(y2 ~ x2)
abline (regl)

abline (reg2, col=2)

# compare standard errors
summary (regl) Scoefficients
summary (reg2) Scoefficients



x1




Interval Estimation of Y’s

= Recall the model:

E(Y) ::80 ""/BlX

= \WWe might be interested in the mean value for a
given value of X.

= This means, for example, “What is true mean
LOS when number of beds is 4007”

= |t does NOT mean “What is value of LOS when
number of beds is 4007?”




Mean versus individual

= Keep it straight: can be confusing.
= Using previous results,

¥~ N(E(Y).0(F)
where
A X. —X)?
o(7) =07 Lo 2T
. Z(Xi_)?)z
i i=1 |

= We call this the sampling distribution of Yhat.



Interval estimation

= Normality: follows from residuals, slope, and
intercept being normal.

= Mean: easily shown by substituting in slope and
Intercept
= Variance: a little more detall
* variability depends on distance of X from mean of X

« Recall plots of 95% Cls
* variation in slope has greater impact at extremes of X
than in the middle

 We substitute our estimate of MSE and then we have
a t-distribution



Example:

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 8.6253643 0.2720589 31.704 < 2e-16 ***
dataSBEDS 0.0040566 0.0008584 4.726 6.77e-06 ***

Residual standard error: 1.752 on 111 degrees of freedom

> mean (data$BEDS)

[1] 252.1681

> sum( (dataS$SBEDS - mean (dataSBEDS)) "2)
[1] 4165090

113 4165090

6 (Y,)=1.752* |, '<4°°—252-2>2J=o.0433




Interval estimation

» Use our standard confidence interval approach:

7o\

Yj i tl—O/,n—26(Yj)

= Note that what differs is the way the standard
error is calculated.

= Otherwise, all of the these tests and intervals
follow the same pattern.



Y. = 8.63+0.00406*400 = 10.254
Example: /
&(Yj) =+/0.0433 =0.208
95%CI :
Y +198*4(Y,) = {9.842,10.67}
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Prediction

= \We'd like to know what to expect for NEW
observations

» Example: if we added another hospital to our
dataset with 400 beds, what is the likely
observed mean LOS for that hospital?

= “Prediction interval’

= |ntuition:

« we are making inference about an individual hospital,
not the mean of all hospitals

it should be wider than the confidence interval for the
mean of Y|X



Prediction

= (Can be divided into two types of uncertainty
1. Variation in the location of the the distribution of Y|X

2. Variation within the probability distribution of Y.

prediction
limits if E(Y)
IS here '

'« conf limits for E(Y]j) —»




Added variability in prediction intervals

» Variance of a given Y value, given X is:

= Variance of the sampling distribution of Yhat is:

= S0, o*(prediction) =



Prediction interval

= Based on the estimate of the variance of the
residuals

N

Y £ tl_%n_z&( pred)
where

6’ (pred) = 6 +&2(fj)

X, -X)
2Ly &=
n

]
o}

n

ZXXiﬁff

i=1




Revisit our example

"2(Y ) — 1 7522\- (400—252.2)2 J: 00433

113 4165090

6 (pred) =6 +6*(Y,)=1.752> +0.0433 =3.11

)A’. =8.63+0.00406*400 =10.254
o(pred)=+3.11=1.76

95% prediction interval :

Y. £1.98*c(pred) ={6.77,10.74}
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Nearer to the mean?

= \What about 250 bed hospital?

6*(Y,) =1.752*[{

113

_|_

(250—252.2)2 _ O 0272

4165090

6*(pred)= 6> +6°(Y,)=1.752% +0.0272 =3.10

N

Y, =8.63+0.00406*250 =9.645

o(pred)=+/3.10=1.76
95% prediction interval ;

Y, £1.98*6(pred) = {6.16,13.13}
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Diagnostics

= \We made some assumptions
= Most relate to the residuals
= |tis important to check them when possible.

= Recall:
* residuals are normal

* variance of residuals is constant over the range of X
 residuals are independent of one another



Diagnostic Considerations via Residuals

* The residuals are not normally distributed
= The residuals do not have constant variance
= The model fits all but one or a few outliers

= The regression function is not linear

* The residuals are not independent

= One or more predictors have been omitted from
the model




Several flavors of residual plots

» Residuals (y-axis) vs. Fitted values (x-axis)

» Residuals (y-axis) vs. Covariate (x-axis)

» Squared residuals (y-axis) vs. covariate (x-axis)
» Residuals vs. time

» Residuals vs. omitted predictor (MLR)

= Boxplot of residuals

= Normality probability plot of residuals



Classic diagnostic tool: residual plot
What can you see from here?

reg$residuals
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Residuals vs. X

data$BEDS
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Normality of Residuals

= How to check?
= Look at their distribution!

Histogram of reg$residuals
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Normal Probability Plots & QQ-Plots

= Small departures from normality (of residuals) is not a
big deal

= But, if the residuals have heavy tails than a normal
distribution, that implies outliers

= Diagnostic Tools:

« Normal Probability Plot:
= plots residuals (x-axis) vs. the cumulative probability p = (i-1/2)/n
» |f residuals are normal, this will be a straight line

« Quantile-Quantile Plot: (aka QQ-plot)

» plots quantiles of the standard normal vs. quantiles of the data
» Should be a straight line if residuals are normal



QQ-plot of our regression

ggnorm(res)

ggline (res)

Normal Q-Q Plot
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Theoretical Quantiles




Constant variance assumption

» |s the spread of the residuals around the y=0
line approximately constant over the range of x?

reg$residuals
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Constant variance assumption

» |s the spread of the residuals around the y=0
line approximately constant over the range of x?

*
o < ||® BW=50
S * BW=100
% [ ]
e ™
5 ‘.,..*
a o &
% N — .‘d'. %
£ *%s
4 Sogpp g .. ° 0,
~ - e *
T T T T T
0 200 400 600 800
Number of Beds




R code

res <- regS$residuals
x <- data$BEDS

# estimate variance in bins
# use two different bin widths: +/-50 and +/-100
n <- nrow(data)
vv50 <- vv100 <- rep(NA, n)
for(i in 1:n) {
vvb0[i] <- wvar(res[x>x[1]-50 & x<x[1]+50])
vv100[1] <= var(res[x>x[1]-100 & x<x[1]+1007])

# plot
plot (x, sgrt(vvb0), ylab="Estimated SD of residuals",
xlab="Number of Beds", pch=16)

points (x, sgrt(vv1l00), col=2, pch=1lo6)
legend (10,4.5, c("BwW=50","BW=100"), pch=c(l6,16),
col=c(1l,2))



Another Approach for Constant Variance Test

= Covariate vs. Squared (or Absolute) Residuals

= Tests for “fanning” of data: larger variance as X
Increases




R code

# plot x vs. absolute value of resids
plot (x, abs(res))

res.reqg <- 1lm(abs(res) ~ x)

abline (res.req)

summary (res.req)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.8533786 0.1891567 4,511 1.0le-05 **x*
X 0.0014415 0.0005968 2.415 0.0174 ~*



Lack of linear fit
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Example of lack of linear fit

data$LOS
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data$NURSE

reg$residuals
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Curvature in the model?

> nurse?2 <- (data$NURSE) "2
> reg2 <- lIm(data$LOS ~ data$NURSE + nurse?2)
> summary (reg?2)

Call:
Im(formula = data$SLOS ~ dataSNURSE + nurse?2)

Residuals:
Min 10 Median 30 Max
-3.3397 -0.9841 -0.2522 O0.0locd 9.5078

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 8.038e+00 3.977e-01 20.212 < 2e-1o6 **x*
data$NURSE 1.453e-02 3.846e-03 3.777 0.000258 *x*xx*
nurse?’ -1.842e-05 6.833e-06 -2.695 0.008136 **

Signif. codes: 0 Y***x’ (0,001 ‘**’ 0.01 *" 0.05 '.” 0.1

\

’

1



>

vhat <- reg2$fitted.values

plot (data$NURSE,
lines (sort (data$SNURSE),

abline (regqg,

lwd=2)
lwd=2)

datasLOS)

vhat [order (data$SNURSE) ], col=2,

data$LOS
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Independence?

= Can be hard to test

= |f there is time information and it is thought that
their may be a time trend, you can try that

= Butisn't time then a predictor?

» yes: if you adjust for time, then you may gain
Independence

= Example: region. Are residuals independent
with respect to region?



10

Residuals °
by Region

NE NC S W

par (mar=c(4,5,1,1))

reg <- 1lm(data$LOS~ dataSBEDS)

boxplot (reg$residuals ~ dataSREGION, xaxt="n", ylab="Residuals")
axis(l, at=1:4, labels=c("NE","NC","S","W"))



Adjust for Region

> reg2 <- lm(data$LOS ~ data$BEDS + factor (dataS$SREGION))

> summary (reg2)

Coefficients:

Estimate Std. Error t wvalue
(Intercept) 10.1352898 0.3480667 29.119
data$BEDS 0.0036774 0.000754¢6 4.873
factor (dataSREGION)2 -1.4805010 0.3944535 -3.753
factor (data$SREGION)3 -1.8651866 0.3815803 -4.888
factor (data$SREGION)4 -2.7142774 0.4803359 -5.651
> boxplot (reg2$Sresiduals ~ dataSREGION, xaxt="n")

> axis(l, at=1:4, labels=c("NE","NC",6"S","W"))

Pr(>[t])
< 2e-16
3.79e-06
0.000283
3.560e-06
1.31e-07

* k%

* k%

* k%

* k%

* k%



Adjust for Region (continued)
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So what do you think?

* |s our model ok?
* |f not, what violations do you see?

= How might we improve our SLR?



