Lecture 4: Inference in SLR (continued) Diagnostic approaches in SLR

BMTRY 701 Biostatistical Methods II

A little more in inference of β 's

- Confidence interval for β₁
- This follows easily from discussion of t-test
- Recall sampling distribution for slope:

$$|\hat{\beta}_1 \sim N(\beta_1, \sigma^2(\hat{\beta}_1))|$$

From this, the 95% CI follows:

$$|\hat{eta}_1 \pm t_{0.975,n-2} \hat{m{\sigma}}(\hat{m{\beta}}_1)|$$

Confidence Intervals

More generally,

$$\hat{eta}_1 \pm t_{1-\frac{lpha}{2},n-2} \hat{oldsymbol{\sigma}}(\hat{eta}_1)$$

 And, the same approach is used for the intercept (if you would care to):

$$\left|\hat{eta}_0 \pm t_{1-rac{lpha_2}{2},n-2}\hat{oldsymbol{\sigma}}(\hat{eta}_0)\right|$$

SENIC data

95% CI for β_1 :

 $0.00406 + -1.98*0.000858 = \{0.00236, 0.00576\}$

More meaningful:

• what about the difference in LOS for a 100 bed difference between hospitals?

Go back to sampling distribution:

$$|\hat{\beta}_1 \sim N(\beta_1, \sigma^2(\hat{\beta}_1))|$$

for a 100 unit difference:

$$|100\hat{\beta}_1 \sim N(100\beta_1, (100^2)\sigma^2(\hat{\beta}_1))|$$

More meaningful:

So that implies that the CI takes the form

$$100\hat{\beta}_1 \pm t_{1-\frac{\alpha}{2},n-2} \{100\hat{\sigma}(\hat{\beta}_1)\}$$

Hence, simply multiply the 95% CI limits by 100:

95% CI for 100*β1:

 $100*\ 0.00406\ +/-\ 1.98*100*0.000858 = \{0.236,\ 0.576\}$

What would this look like?

- Recall that the regression line always goes through the means of X and Y.
- We can add our 95% CI limits of the slope to our scatterplot by using the knowledge that the regression line will go through the means of x and y.

```
> mean(data$LOS)
[1] 9.648319
> mean(data$BEDS)
[1] 252.1681
# use these as x and y values. then, use each
# of the slopes to find corresponding intercepts
> abline(8.198, 0.00576, lty=2)
> abline(9.055, 0.00236, lty=2)
```

SENIC data: 95% CI for slope

Important implication

- The slope and intercept are NOT independent
- Notice what happens to the intercept if we increase the slope?
- What happens if we decrease the slope?

A few comments r.e. inferences

- We assume Y|X ~ Normal
- if this is "seriously" violated, our inferences may not be valid.
- But, no surprise, a large sample size will save us
- Slope and intercept sampling distributions are asymptotically normal

Spread of the X's

Recall the estimate of the standard error for the slope:

$$|\hat{\sigma}(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{\sum (X_i - \overline{X})^2}}$$

- What happens to the standard error when the spread of the X's is narrow?
- What happens to the standard error when the spread of the X's is wide?
- (Note: intercept is similarly susceptible)

R code

```
##################
# simulate data
x1 < - runif(100, 0, 10)
x2 < - runif(100, 3, 7)
e < - rnorm(100, 0, 3)
y1 < -2 + 1.5*x1 + e
y2 < -2 + 1.5*x2 + e
plot(x1, y1)
points (x2, y2, col=2)
# fit regression models
reg1 < -lm(y1 \sim x1)
reg2 < -lm(y2 \sim x2)
abline (reg1)
abline (reg2, col=2)
# compare standard errors
summary(req1)$coefficients
summary(req2)$coefficients
```


Interval Estimation of Y's

Recall the model:

$$E(Y) = \beta_0 + \beta_1 X$$

- We might be interested in the mean value for a given value of X.
- This means, for example, "What is true mean LOS when number of beds is 400?"
- It does NOT mean "What is value of LOS when number of beds is 400?"

Mean versus individual

- Keep it straight: can be confusing.
- Using previous results,

$$\hat{Y}_{j} \sim N(E(Y_{j}), \sigma^{2}(\hat{Y}_{j}))$$
where
$$\sigma^{2}(\hat{Y}_{j}) = \sigma^{2} \left[\frac{1}{n} + \frac{(X_{j} - \overline{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \right]$$

We call this the sampling distribution of Yhat.

Interval estimation

- Normality: follows from residuals, slope, and intercept being normal.
- Mean: easily shown by substituting in slope and intercept
- Variance: a little more detail
 - variability depends on distance of X from mean of X
 - Recall plots of 95% Cls
 - variation in slope has greater impact at extremes of X than in the middle
 - We substitute our estimate of MSE and then we have a t-distribution

Example:

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.6253643 0.2720589 31.704 < 2e-16 ***
data$BEDS 0.0040566 0.0008584 4.726 6.77e-06 ***
---
Residual standard error: 1.752 on 111 degrees of freedom
> mean(data$BEDS)
[1] 252.1681
> sum( (data$BEDS - mean(data$BEDS))^2)
[1] 4165090
```

$$\hat{\sigma}^2(\hat{Y}_j) = 1.752^2 \left[\frac{1}{113} + \frac{(400 - 252.2)^2}{4165090} \right] = 0.0433$$

Interval estimation

Use our standard confidence interval approach:

$$\hat{Y}_j \pm t_{1-\frac{\alpha}{2},n-2} \hat{\sigma}(\hat{Y}_j)$$

- Note that what differs is the way the standard error is calculated.
- Otherwise, all of the these tests and intervals follow the same pattern.

Example:

$$\hat{Y}_j = 8.63 + 0.00406 * 400 = 10.254$$

$$\hat{\sigma}(\hat{Y}_j) = \sqrt{0.0433} = 0.208$$

95%*CI*:

$$\hat{Y}$$
. +1.98* $\hat{\sigma}(\hat{Y}_j)$ = {9.842,10.67}

Prediction

- We'd like to know what to expect for NEW observations
- Example: if we added another hospital to our dataset with 400 beds, what is the likely observed mean LOS for that hospital?
- "Prediction interval"
- Intuition:
 - we are making inference about an individual hospital, not the mean of all hospitals
 - it should be wider than the confidence interval for the mean of Y|X

Prediction

- Can be divided into two types of uncertainty
- 1. Variation in the location of the the distribution of Y|X|
- 2. Variation within the probability distribution of Y.

Added variability in prediction intervals

Variance of a given Y value, given X is:

Variance of the sampling distribution of Yhat is:

• So, σ^2 (prediction) =

Prediction interval

Based on the estimate of the variance of the residuals

$$\hat{Y}_{j} \pm t_{1-\alpha/2,n-2} \hat{\sigma}(pred)$$

$$where$$

$$\hat{\sigma}^{2}(pred) = \hat{\sigma}^{2} + \hat{\sigma}^{2}(\hat{Y}_{j})$$

$$= \hat{\sigma}^{2} \left[1 + \frac{1}{n} + \frac{(X_{j} - \overline{X})^{2}}{\sum_{i=1}^{n} (X_{j} - \overline{X})^{2}} \right]$$

Revisit our example

$$\hat{\sigma}^{2}(\hat{Y}_{j}) = 1.752^{2} \left[\frac{1}{113} + \frac{(400 - 252.2)^{2}}{4165090} \right] = 0.0433$$

$$\hat{\sigma}^{2}(pred) = \hat{\sigma}^{2} + \hat{\sigma}^{2}(\hat{Y}_{j}) = 1.752^{2} + 0.0433 = 3.11$$

$$\hat{Y}_j = 8.63 + 0.00406 * 400 = 10.254$$

$$\hat{\sigma}(pred) = \sqrt{3.11} = 1.76$$

95% prediction interval:

$$\hat{Y}_j \pm 1.98 * \hat{\sigma}(pred) = \{6.77, 10.74\}$$

Nearer to the mean?

What about 250 bed hospital?

$$\begin{vmatrix} \hat{\sigma}^2(\hat{Y}_j) = 1.752^2 \left| \frac{1}{113} + \frac{(250 - 252.2)^2}{4165090} \right| = 0.0272 \\ \hat{\sigma}^2(pred) = \hat{\sigma}^2 + \hat{\sigma}^2(\hat{Y}_j) = 1.752^2 + 0.0272 = 3.10 \end{vmatrix}$$

$$\hat{Y}_j = 8.63 + 0.00406 * 250 = 9.645$$

$$\hat{\sigma}(pred) = \sqrt{3.10} = 1.76$$

95% prediction interval:

$$\hat{Y}_j \pm 1.98 * \hat{\sigma}(pred) = \{6.16,13.13\}$$

Diagnostics

- We made some assumptions
- Most relate to the residuals
- It is important to check them when possible.

Recall:

- residuals are normal
- variance of residuals is constant over the range of X
- residuals are independent of one another

Diagnostic Considerations via Residuals

- The residuals are not normally distributed
- The residuals do not have constant variance
- The model fits all but one or a few outliers
- The regression function is not linear
- The residuals are not independent
- One or more predictors have been omitted from the model

Several flavors of residual plots

- Residuals (y-axis) vs. Fitted values (x-axis)
- Residuals (y-axis) vs. Covariate (x-axis)
- Squared residuals (y-axis) vs. covariate (x-axis)
- Residuals vs. time
- Residuals vs. omitted predictor (MLR)
- Boxplot of residuals
- Normality probability plot of residuals

Classic diagnostic tool: residual plot What can you see from here?

Residuals vs. X

Normality of Residuals

- How to check?
- Look at their distribution!

Normal Probability Plots & QQ-Plots

- Small departures from normality (of residuals) is not a big deal
- But, if the residuals have heavy tails than a normal distribution, that implies outliers
- Diagnostic Tools:
 - Normal Probability Plot:
 - plots residuals (x-axis) vs. the cumulative probability p = (i-1/2)/n
 - If residuals are normal, this will be a straight line
 - Quantile-Quantile Plot: (aka QQ-plot)
 - plots quantiles of the standard normal vs. quantiles of the data
 - Should be a straight line if residuals are normal

QQ-plot of our regression

```
qqnorm(res)
qqline(res)
```


Constant variance assumption

Is the spread of the residuals around the y=0 line approximately constant over the range of x?

Constant variance assumption

Is the spread of the residuals around the y=0 line approximately constant over the range of x?

R code

```
res <- reg$residuals
x <- data$BEDS
# estimate variance in bins
# use two different bin widths: \pm -50 and \pm -100
n <- nrow(data)</pre>
vv50 < - vv100 < - rep(NA, n)
for(i in 1:n) {
  vv50[i] <- var(res[x>x[i]-50 & x<x[i]+50])
  vv100[i] <- var(res[x>x[i]-100 & x<x[i]+100])
# plot
plot(x, sqrt(vv50), ylab="Estimated SD of residuals",
  xlab="Number of Beds", pch=16)
points (x, sqrt(vv100), col=2, pch=16)
legend(10, 4.5, c("BW=50", "BW=100"), pch=c(16, 16),
  col = c(1, 2)
```

Another Approach for Constant Variance Test

- Covariate vs. Squared (or Absolute) Residuals
- Tests for "fanning" of data: larger variance as X increases

R code

Lack of linear fit

Example of lack of linear fit

Curvature in the model?

```
> nurse2 <- (data$NURSE)^2</pre>
> req2 <- lm(data$LOS ~ data$NURSE + nurse2)</pre>
> summary(req2)
Call:
lm(formula = data$LOS ~ data$NURSE + nurse2)
Residuals:
   Min 10 Median
                            30 Max
-3.3397 - 0.9841 - 0.2522 0.6164 9.5678
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.038e+00 3.977e-01 20.212 < 2e-16 ***
data$NURSE 1.453e-02 3.846e-03 3.777 0.000258 ***
nurse2 -1.842e-05 6.833e-06 -2.695 0.008136 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- > yhat <- reg2\$fitted.values</pre>
- > plot(data\$NURSE, data\$LOS)
- > abline(reg, lwd=2)

Independence?

- Can be hard to test
- If there is time information and it is thought that their may be a time trend, you can try that
- But isn't time then a predictor?
- yes: if you adjust for time, then you may gain independence
- Example: region. Are residuals independent with respect to region?

Residuals by Region


```
par(mar=c(4,5,1,1))
reg <- lm(data$LOS~ data$BEDS)
boxplot(reg$residuals ~ data$REGION, xaxt="n", ylab="Residuals")
axis(1, at=1:4, labels=c("NE","NC","S","W"))</pre>
```

Adjust for Region

```
> boxplot(reg2$residuals ~ data$REGION, xaxt="n")
> axis(1, at=1:4, labels=c("NE","NC","S","W"))
```

Adjust for Region (continued)

So what do you think?

Is our model ok?

• If not, what violations do you see?

How might we improve our SLR?